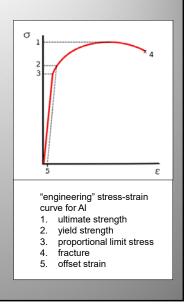
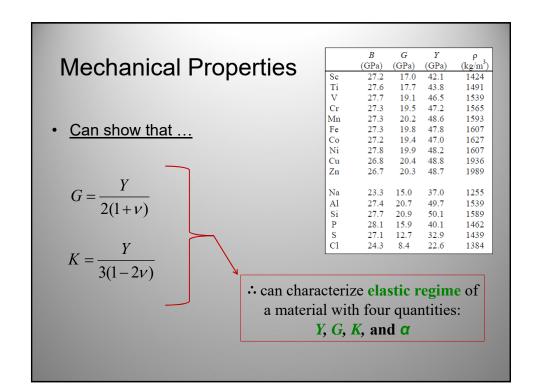


Mechanical Properties

- yield strength (yield stress, yield point, elastic limit) = stress at which material begins to deform plastically
- tensile strength (ultimate tensile stress, ultimate strength) = maximum stress material can handle
- compressive strengths not necessarily equal to tensile strengths
- brittle materials no plastic deformation region; rupture occurs without elongation (e.g., concrete, carbon fiber)
- ductile materials beyond yield point, where linear elastic response ends



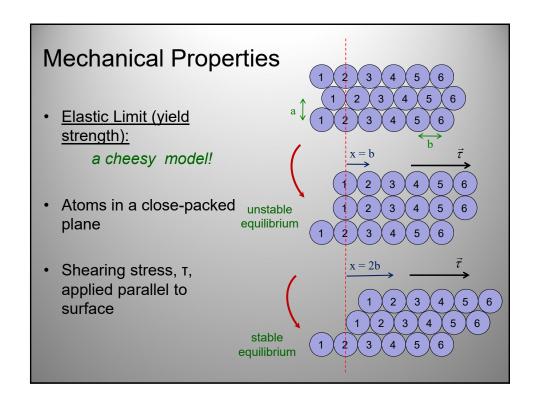
Mechanical Properties • The range of Young's modulus values The range of Young's



Typical values of Young's modulus, Y, the modulus of rigidity, G, the bulk modulus, K, and Poisson's ratio, v, for a selection of solids.

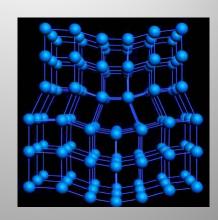
	Y (109 N/m ²)	G (109 N/m ²)	K (109 N/m ²)	v
Diamond	950	390	540	0.21
Al	70	24	72	0.33
Cu	130	48	140	0.35
Fe	120	70	170	0.17
Pb	15	6	43	0.40
W	350	150	320	0.28
Brass	100	37	110	0.35
Glass	75	23	41	0.22
Steel	210	84	170	0.29

Mechanical Properties Shearing Stress Atoms in a close-packed plane Shearing stress, T, applied parallel to surface



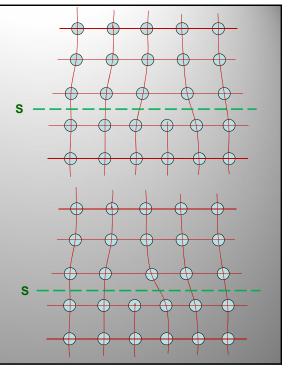
Mechanical Properties

- Role of dislocations
- Lower values of modulii



Mechanical Properties

- Microscopic scale: edge dislocation
- Propagates through material with applied shear stress
- small force required to move dislocation along S, the slip plane
- So, don't have to move entire plane above and below S to get deformation! Thus, yield stress is lowered.
- Helps explain *plastic* deformation regime



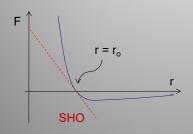
Modeling a Solid

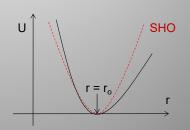
- There are many types of waves that can propagate through a lattice as elementary excitations
- We can model a solid in various ways, classically and quantum mechanically
- The lattice symmetry (periodicity) induces a symmetry (periodicity) in any wave propagating through the lattice.

Name	Field	
Electron	-	
Photon	Electromagnetic wave	
Phonon	Elastic wave	
Plasmon	Collective electron wave	
Magnon	Magnetization wave	
Polaron	Electron + elastic deformation	
Exciton	Polarization wave	

Modeling Interactions

- Model interactions as harmonic, i.e., governed by Hooke's law
- For example, Na⁺Cl⁻ pair ... for small displacements from equilibrium, looks like a harmonic potential





Modeling Interatomic Interactions: thermal expansion

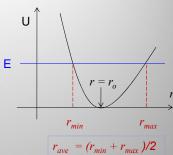
- Asymmetry in potential energy curve can explain thermal expansion
- Thermal energy increases with temperature
- To a first approximation, the change in length ∆L measurement of an object is proportional to the temperature change ∆T by the coefficient of linear expansion:

$$\alpha_L = \frac{1}{L} \frac{dL}{dT}$$

 $\rightarrow \frac{\Delta I}{L}$

 $\frac{L}{T} = \alpha_L \Delta T$

 $\underline{\text{if}} \ \alpha_L$ does not vary too much in the temperature range under consideration

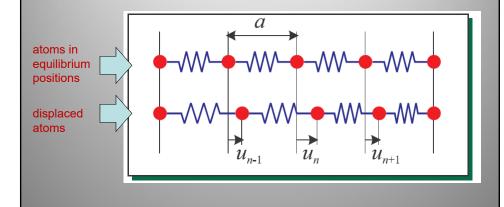


For *isotropic* materials, we can define the coefficient of volume expansion:

$$\alpha_V = \frac{1}{V} \frac{dV}{dT}, \quad \alpha_V = 3\alpha_L$$

Modeling Interatomic Interactions

First Step: Monatomic lattice

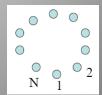


Monatomic Lattice

- Hooke's law: $x_n = n a = \text{equilibrium positions}$ $F_n = -\alpha (2u_n - u_{n+1} - u_{n-1}) =$ force on nth atom
- Try harmonic solutions (longitudinal waves):

$$u_n = A e^{ikx_n - i\omega t}$$

 Boundary conditions = "Born von Karman" BC: assume ends of the chain are connected ("periodic BC") $u_{N+1} = u_1, u_0 = u_1$



Monatomic Lattice

· Dispersion relation for acoustic phonons; relates ω to k:

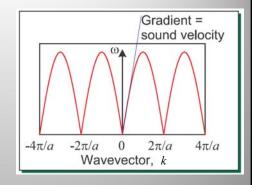
$$\omega(k) = \sqrt{4\alpha/m} \left| \sin(k \, a/2) \right|$$

Phase velocity

$$v = \omega / k$$

· Group velocity:

$$v_g = d\omega/dk$$



... or more generally:

$$\vec{v}_g = \vec{\nabla}_k \omega$$

green = group, red = phase

Monatomic Lattice 1st Brillouin zone · There is (shaded) redundancy by multiples of the reciprocal lattice vector $-2\pi/a$ π/a $2\pi/a$ $-\pi/a$ Wavevector, k Long wavelength limit: $v_g = v = indep of \lambda$ $\omega_{\rm max} = \sqrt{4\alpha/m}$ Stokes' models

